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Abstract
We consider unitary ensembles of Hermitian N × N matrices governed by a
confining potential NV with analytic and uniformly convex V. From earlier
work it is known that the large-N limit of the characteristic function for a finite-
rank Fourier variable K is determined by the Voiculescu R-transform, a key
object in free probability theory. Going beyond these results, we argue that the
same holds true when the finite-rank operator K has the form that is required by
the Wegner–Efetov supersymmetry method. This insight leads to a potent new
technique for the study of local statistics, e.g. level correlations. We illustrate
the new technique by demonstrating universality in a random matrix model of
stochastic scattering.

PACS numbers: 02.30.Fn, 02.50.Cw, 03.65.Nk, 05.30.Ch

1. Introduction

The notions of ‘free probability’ and ‘freeness’ of non-commutative random variables were
introduced by Voiculescu in the study of certain algebras of bounded operators [25]. The word
freeness in this context means a kind of statistical independence of operators. The algebraic
concept of freeness of random variables has a natural realization by random matrices in the
limit of infinite matrix dimension [24]; this realization is what we study, develop and apply in
the present paper.

A central tool of the free probability formalism is the so-called R-transform, which
resembles the logarithm of the characteristic function for commutative random variables.
Voiculescu [23] defined it by the functional inverse of the average trace of the resolvent
operator. A second approach to the subject is due to Speicher [19], who expressed the
moments of the random matrix directly in terms of the Taylor coefficients of the R-transform.
Speicher’s concept of non-crossing partition is a mathematical expression of the dominance
of planar Feynman graphs (using physics parlance) in the large-N limit. In the present paper,
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we will encounter both approaches: the analytical one of Voiculescu and the combinatorial
one of Speicher.

Our long-term goal is a comprehensive description of the spectral correlation functions
and, ultimately, a proof of the universality hypothesis which is expected for certain random
matrix ensembles in the large-N limit. Although the R-transform is a powerful tool to tackle
density-of-states questions, it is fair to say that free probability theory has not yet contributed
much to our understanding of the universality of spectral correlation functions at the scale of
the level spacing.

Bearing this in mind, we now change subject and turn to the so-called supersymmetry
method, by which we mean the technique of integration over commuting and anti-commuting
variables pioneered by Wegner [26] and Efetov [10]. In its original formulation (using
the Hubbard–Stratonovich transformation), this method was limited to Gaussian disorder
distributions. Nonetheless, with this limitation it has enjoyed great success in producing non-
trivial results for a number of physics problems, e.g. level statistics of small metallic grains,
localization in thick disordered wires, scaling exponents at the Anderson transition, etc. In
the present paper, we will take advantage of a recent variant, called superbosonization, which
makes it possible in principle to treat a class of disorder distributions much wider than the
Gaussian one.

Since their inception in the 1980s, free probability theory and the supersymmetry method
have coexisted with little or no mutual interaction. Forecast in a prescient remark by Zinn-
Justin [30], the message of the present paper is that a new quality emerges when the two
formalisms are combined. More specifically, we will show that the characteristic function
of the probability law of the random matrix ensemble—an object of central importance to
superbosonization—has a large-N limit which is determined by the R-transform. This result
paves the way for a number of applications. As a first application, we will illustrate the new
method by demonstrating universality for a random matrix model of stochastic scattering.

1.1. Summary of results

Our results make reference to the R-transform, which we now introduce in more detail.
Consider the average trace of the resolvent operator, g(z) := limN→∞ N−1〈Tr (z − H)−1〉,
z ∈ C\R, of the random matrix H. Voiculescu inverts the function z �→ g(z) to define the
R-transform as the regular part of g(z) = k �→ k−1 + R(k) = z. It has a power series
R(k) = ∑

n�1 cn kn−1 whose coefficients cn are called free cumulants. These are analogs (in
the non-commutative setting) of the usual cumulants in that they are linear with respect to free
convolution.

In the present paper, we consider UN -invariant probability measures μN with a density of
the form

dμN(H) := e−N Tr V (H) dH, (1.1)

where dH denotes Lebesgue measure on the linear space of Hermitian N × N matrices,
and R � x �→ V (x) is analytic and uniformly convex. The focus of our analysis is the
characteristic function

�(K) =
∫

eTr HKdμN(H). (1.2)

Note that �(K) is invariant under conjugation K �→ g−1Kg by g ∈ GLN .
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Motivated by the supersymmetry method as reviewed in section 2, we make a study of
�(NK) for linear operators K of the form

K =
p∑

a=1

ϕa ⊗ ϕ̃a +
q∑

b=1

ψb ⊗ ψ̃b, (1.3)

with p, q kept fixed in the limit N → ∞. Here, ϕa , ψb ∈ C
N are vectors, while

ϕ̃a, ψ̃b ∈ (CN)∗ are co-vectors. The components of ϕ̃a are complex commuting variables
or generators of the symmetric algebra S(CN), whereas the components of ψ̃b are complex
anti-commuting variables or generators of the exterior algebra ∧(CN). All inner products
〈̃ϕa, ϕb〉 for a, b = 1, . . . , p are kept fixed in the large-N limit.

For such K, we argue that the following holds:

lim
N→∞

N−1 ln �(NK) =
∞∑

n=1

cn

n
Tr Kn. (1.4)

We note that this formula makes perfect sense as long as the power series of the R-transform
has infinite radius of convergence. The latter property is ensured by our assumptions on V.

1.1.1. Related mathematical work. To put the result (1.4) into context, we now mention
related mathematical work on the large-N asymptotics of the following spherical integral
(known in the physics literature as the Itzykson–Zuber integral):

IXN
(k) =

∫
UN

ek Tr (XN g�g−1) dg, (1.5)

for the case of a rank-1 projector �. Let the eigenvalues x1,N , . . . , xN,N of the Hermitian
matrices XN be confined to a finite interval [a, b] and assume that the empirical measure
N−1 ∑

j δ(x − xj,N ) converges weakly to a measure with support in [a, b]. Under these
conditions, the following is known.

Collins [6] differentiates the scaled logarithm of the spherical integral n times at zero to
show that

lim
N→∞

N−1 dn

dkn
ln IXN

(Nk)

∣∣∣∣
k=0

= (n − 1)! cn, (1.6)

i.e. he establishes convergence to the nth free cumulant (times a factorial). A stronger version
of this result,

lim
N→∞

N−1 ln IXN
(Nk) =

∫ k

0
R(k′) dk′ =

∞∑
n=1

cn

n
kn, (1.7)

was proved by Guionnet and Maida [15] under the condition that k ∈ C is small enough. (Note
that (1.7) implies (1.6).) For k real and large, however, the authors of [15] obtain a different
behavior, separated from the small-k regime by a phase transition.

These results have a bearing on (1.4) for p = 1, q = 0 because the integral (1.2) can
be done in two steps: fixing some set of eigenvalues for H we first do the integral over UN

orbits—that is precisely the spherical integral (1.5)—and afterwards we take the average over
the fluctuating eigenvalues. While it may seem puzzling at first sight that the authors of [15] find
a phase transition whereas we do not, section 3.6 explains that there is no contradiction here.
The assumption of eigenvalues strictly confined to an interval [a, b] would mean in our context
that the confining potential V (x) is infinitely high outside of [a, b]. In contradistinction, we
assume that V is both uniformly convex and analytic. In the latter setting, the existence of a
phase transition is ruled out on physical and mathematical grounds. We in fact argue that the
limit in (1.7) is an entire function of k ∈ C.
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1.1.2. Toward applications. By the general principles of invariant theory, the characteristic
function �(K) = �(g−1Kg) (g ∈ GLN ) lifts to a function �̂(Q) of the supermatrix of
GLN -invariants

Q =
(〈̃ϕa, ϕa′ 〉 〈̃ϕa, ψb′ 〉

〈ψ̃b, ϕa′ 〉 〈ψ̃b, ψb′ 〉
)

a, a′=1,...,p; b, b′=1,...,q

. (1.8)

The angular brackets still mean contraction of the vector with the co-vector. By the relation
Tr Kn = STr Qn (where STr denotes the supertrace), it follows from (1.4) that

lim
N→∞

N−1 ln �̂(NQ) =
∞∑

n=1

cn

n
STr Qn. (1.9)

The lifted function �̂ is input required by the superbosonization method (section 2); in the past,
this input was the link missing for applications. With (1.9) established, we now have at our
disposal a powerful new method for the treatment of random matrix problems. In the present
paper, we illustrate the new method by demonstrating universality for a random matrix model
of stochastic scattering. In particular, we point out that the pertinent large-N saddle-point
equation for Q is Voiculescu’s equation k−1 +R(k) = z generalized to the (super-)matrix case:

Q−1 + R(Q) = z Idp|q . (1.10)

While the present paper addresses only the case of unitary symmetry, our treatment is
robust and readily extends to ensembles with orthogonal or symplectic symmetry.

1.2. Outline

An outline of the contents of the paper is as follows. Section 2 provides background
and motivation by introducing the characteristic function �(K) as a key object of the
supersymmetry method. For the special case of K = ϕ ⊗ ϕ̃ = k� with k ∈ R and � a
rank-1 projector, the large-N asymptotics of �(NK) is computed in section 3 using Dyson
Coulomb gas methods. Particular attention is paid to the fact that the asymptotics for small and
large k match perfectly to give an answer which is smooth as a function of k. The fermionic
analog K = ψ ⊗ ψ̃ with anti-commuting ψ, ψ̃ is treated by drawing on information from
representation theory in section 4. By using standard perturbation theory in the large-N limit,
we then develop in section 5 a combinatorial description of the full superfunction �(NK).
The resulting formalism is applied to a model of stochastic scattering in section 6. An outlook
is given in section 7.

2. Review: supersymmetry method

We begin the paper with a concise review of the supersymmetry method and, in particular,
of superbosonization. In this way, we shall introduce and motivate the Fourier transform
�(K) = ∫

eTr HKdμN(H) with K given by (1.3), which is a superfunction with symmetries
and the key object to be analyzed in the following.

2.1. First steps

Consider the Hermitian vector space C
N with its standard Hermitian scalar product

h: C
N × C

N → C, which determines a C-antilinear bijection

† : C
N → (CN)∗, v �→ v† := h(v, ·), (2.1)
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between C
N and its dual vector space (CN)∗. Following standard physics conventions, we

denote by the same symbol (dagger) the operation L �→ L† of taking the Hermitian conjugate
of a linear operator L ∈ End(CN).

In the following, the Hamiltonian H will always be a random Hermitian operator:

End(CN) � H = H †, (2.2)

distributed according to some probability measure μN . Our goal is to study the spectral
correlation functions which are defined as averages with respect to μN . For this purpose, we
consider the characteristic polynomial z �→ Det(z−H) associated with H. The supersymmetry
method allows us to compute expectations of products of ratios of such polynomials, and hence
of products of resolvent traces

∏
a Tr (za − H)−1, as follows.

Let us denote the canonical pairing (CN)∗ ⊗ C
N → C (i.e. evaluation of a linear form

ϕ̃ ∈ (CN)∗ on a vector ϕ ∈ C
N ) by

ϕ̃ ⊗ ϕ �→ 〈̃ϕ, ϕ〉. (2.3)

With the resolvent operator (z − H)−1 for z ∈ C\R, we associate a holomorphic function
γ : (CN)∗ × C

N → C by

γ (̃ϕ, ϕ) = e−〈̃ϕ,ϕ z−Hϕ〉. (2.4)

Now let V z
R

⊂ (CN)∗ × C
N be the graph of the R-linear mapping

C
N → (CN)∗, ϕ �→ −isϕ†, s := sign(Im z) ∈ {±1}. (2.5)

Thus, V z
R

is the real vector space of all pairs (̃ϕ, ϕ) = (−isϕ†, ϕ) for ϕ ∈ C
N . The Gaussian

γ decreases rapidly along V z
R

. Indeed,

Re 〈̃ϕ, ϕ z − Hϕ〉|V z
R

= Reh(ϕ,−is(z − H)ϕ) = |Im z| h(ϕ, ϕ) � 0, (2.6)

so we may integrate γ along V z
R

. By a standard formula for Gaussian integrals, we have∫
V z

R

e−〈̃ϕ,ϕ z−Hϕ〉 = Det−1(z − H), (2.7)

where the integral is over V z
R

with (iR-valued) Lebesgue measure normalized by the condition∫
V z

R

e−〈̃ϕ,ϕ〉 = 1. (This measure is not made explicit in our notation.)

Expressing Tr (z − H)−1 as a logarithmic derivative,

Tr (z − H)−1 = d

dz
ln Det(z − H) = Det′(z − H)

Det(z − H)
, (2.8)

we see that we need a Gaussian integration formula for Det(z − H) (where z ∈ C) in addition
to that for reciprocals Det−1(z − H). Such a formula can be had by replacing commuting
variables ϕ by anticommuting variables ψ , i.e. we view

〈ψ̃, ψ z − Hψ〉 ∈ ∧2(CN ⊕ (CN)∗) (2.9)

as a quadratic element of the exterior algebra generated by the direct sum C
N ⊕ (CN)∗. The

precise meaning is this. Let {ei} be a basis of C
N and {ei} be the dual basis of (CN)∗.

Let � : C
N ⊕ (CN)∗ → ∧(CN ⊕ (CN)∗) be the canonical embedding, or simply put, view

ψ̃i ≡ �(ei) and ψi ≡ �(ei) as anticommuting variables or generators of the exterior algebras
∧(CN) and ∧((CN)∗), respectively. Then, we define 〈ψ̃, ψz − Hψ〉 to be the element of
∧2(CN ⊕ (CN)∗) given by

〈ψ̃, ψ z − Hψ〉 :=
∑
i,j

ψ̃i 〈ei, (z − H) ej 〉ψj . (2.10)

5
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By exponentiating this expression, we get a Gaussian element in (the even part of) the
full exterior algebra

e〈ψ̃,ψ z−Hψ〉 ∈
N⊕

k=0

∧2k(CN ⊕ (CN)∗). (2.11)

The Berezin integral f �→ ∫
f for f ∈ ∧(CN ⊕ (CN)∗) is, by definition, the projection on

the one-dimensional subspace ∧2N(CN ⊕ (CN)∗) of top degree. In the case of our Gaussian
integrand, the result of this projection is known to be proportional to the determinant of
the operator z−H. We normalize the Berezin integral in such a way that the constant of
proportionality is unity:∫

e〈ψ̃,ψ z−Hψ〉 = Det(z − H). (2.12)

To summarize the above, we have two Gaussian integration formulas: equation (2.12) for the
secular determinant Det(z − H) and equation (2.7) for its reciprocal.

By multiplying these formulas, averaging the result with the given probability density
dμN and interchanging the order of integrations, we obtain∫

Det(w1 − H)

Det(w0 − H)
dμN(H) =

∫
V

w0
R

�(ϕ ⊗ ϕ̃ + ψ ⊗ ψ̃) e−w0 〈̃ϕ,ϕ〉+w1〈ψ̃,ψ〉, (2.13)

where w1 ∈ C, w0 ∈ C\R and � is the characteristic function

�(K) =
∫

eTr HKdμN(H). (2.14)

Note that formula (2.13) requires the evaluation of � for

K = ϕ ⊗ ϕ̃ + ψ ⊗ ψ̃ =
N∑

i,j=1

(ϕiϕ̃j + ψiψ̃j )ei 〈ej , ·〉, (2.15)

where ϕi : C
N → C and ϕ̃j : (CN)∗ → C are the linear coordinates associated with the

bases {ei} of C
N and {ej } of (CN)∗. Thus, the operator K is an endomorphism of C

N with
coefficients in the tensor product

S(CN ⊕ (CN)∗) ⊗ ∧(CN ⊕ (CN)∗) (2.16)

of the symmetric and exterior algebras of C
N ⊕ (CN)∗. It will be important that the numerical

part of K = ϕ ⊗ ϕ̃ + ψ ⊗ ψ̃ has finite rank.
The relation (2.13) transfers the integral over N × N random matrices H to an integral

over the variables ϕ,ψ constituting the bilinear K. This transfer will be a step forward if we
can calculate the function �(K) or, at least, gather enough information about it. For the case
of a Gaussian probability measure μN , the Fourier–Laplace transform �(K) is also Gaussian.
The supersymmetry formalism then takes its course and delivers results quickly. However,
using the traditional version of the supersymmetry method one did not know how to proceed
in the general case of non-Gaussian μN .

2.2. Superbosonization

One way to proceed, as we shall now review, is to make a symmetry assumption about
�(K). Let V := (CN)∗ ⊕ C

N . Then eTr HK for K = ϕ ⊗ ϕ̃ + ψ ⊗ ψ̃ is a superfunction
f : V → ∧(V ∗), and by making the identifications ψi ≡ dϕi and ψ̃i ≡ dϕ̃i , we may
regardf = eTrHK as a holomorphic differential form on the complex vector space V. Let now

6
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μN be invariant under conjugation H �→ gHg−1 by the elements g of some compact group
G. Then by integrating f against dμN we obtain a differential form � : V → ∧(V ∗) which
is G-equivariant, i.e.

�(v) = g�(gv), (2.17)

where (g, v) �→ gv and (g,�) �→ g� are the natural G-actions on V resp. ∧(V ∗). Later, we
will write this equivariance property more intuitively as �(K) = �(gKg−1).

In such a setting, the superbosonization method offers a reduction step which is available
[17] for the classical Lie groups G = UN , ON and USpN . For each of these groups, the
algebra of G-equivariant differential forms on V is generated by (the dual of) the Z2-graded
vector space W = W0 ⊕ W1 of quadratic G-invariants [16]. After lifting the differential form
� : V → ∧(V ∗) to a superfunction �̂ : W0 → ∧(W ∗

1 ), the step of ‘superbosonization’
transfers the integral on the rhs of (2.13) to an integral of the lifted superfunction over a
(low-dimensional) Riemannian symmetric superspace.

We now reproduce from [17] the details for the case of G = UN , with a few notational
adjustments to fit the present situation. By immediate generalization of (2.13), we have∫ ∏q

b=1 Det(w1, b − H)∏p

a=1 Det(w0, a − H)
dμN(H) =

∫
�

( ∑
a

ϕa 〈̃ϕa, ·〉 +
∑

b

ψb〈ψ̃b , ·〉
)

× e− ∑
w0, a 〈̃ϕa,ϕa〉+

∑
w1, b 〈ψ̃b,ψb〉, (2.18)

where the ϕ-integral is over the real subspace

ϕ̃a = −isaϕ
†
a, sa = sign (Im w0, a), a = 1, . . . , p. (2.19)

While intending to specialize to the case of p = q later, we here describe the general case
p �= q for a clear exposition of the formalism.

To simplify the notation, it is convenient to regard the vectors ϕ1, . . . , ϕp as the
components of a linear mapping ϕ from C

p to C
N :

ϕ := (ϕ1, . . . , ϕp) ∈ Hom(Cp, C
N). (2.20)

Similarly, we view ϕ̃ := (̃ϕ1, . . . , ϕ̃p) as a linear mapping:

ϕ̃ ∈ Hom(CN, C
p). (2.21)

Using the same conventions on the anti-commuting side, we write our integral as∫ ∏q

b=1 Det(w1, b − H)∏p

a=1 Det(w0, a − H)
dμN(H) =

∫
�(ϕϕ̃ + ψψ̃) e−Tr (ϕ w0ϕ̃+ψw1ψ̃). (2.22)

Here Tr = Tr
C

N , and w0 = diag(w0,1, . . . , w0,p), w1 = diag(w1,1, . . . , w1,q ) are diagonal
operators. The integral is over

ϕ̃ = −isϕ†, s = diag(s1, . . . , sp). (2.23)

It is evident that the integrand on the rhs of (2.22) has the invariance property

f (ϕ, ϕ̃, ψ, ψ̃) = f (gϕ, ϕ̃g−1, gψ, ψ̃g−1) (2.24)

for g ∈ UN and hence, by holomorphic continuation, for g ∈ GLN . This implies that there

exists [17] a (lifted) function f̂ (Q) of a supermatrix Q = (
x σ

τ y

)
such that

f̂

(
ϕ̃ϕ ϕ̃ψ

ψ̃ϕ ψ̃ψ

)
= f (ϕ, ϕ̃, ψ, ψ̃). (2.25)

7
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Precisely speaking, f̂ : W0 → ∧(W ∗
1 ) is a function on the Z2-even vector space

W0 = End(Cp) ⊕ End(Cq) (the diagonal blocks of Q) with values in the exterior algebra
of the dual of the Z2-odd vector space W1 = Hom(Cp, C

q) ⊕ Hom(Cq, C
p) (the off-diagonal

blocks of Q). The lift f̂ (Q) turns into the given function f (ϕ, ϕ̃, ψ, ψ̃) upon substituting for
Q the quadratic GLN -invariants,

Q =
(

x σ

τ y

)
→

(
ϕ̃ϕ ϕ̃ψ

ψ̃ϕ ψ̃ψ

)
. (2.26)

The ensuing step of superbosonization exploits the GLN -symmetry of the integrand to
implement a reduction: it transfers the integral over the variables ϕ,ψ to an integral over the
supermatrices Q:∫

f (ϕ, ϕ̃, ψ, ψ̃) = cp, q

∫
DQ SDetN(Q) f̂ (Q). (2.27)

The integral on the right-hand side is over

Hs
p × Uq ⊂ End(Cp) × End(Cq), (2.28)

where Uq ≡ U(Cq) is the unitary group of C
q and

Hs
p := {−isM | M = M† > 0} (2.29)

is a space isomorphic to the positive Hermitian p × p matrices (replacing the quadratic UN -
invariant ϕ†ϕ). With a natural choice [17] of normalization for the Berezin integration form
DQ, the normalization factor is cp, q = vol(Un)/vol(Un−p+q). In the important special case
of p = q, the Berezin integration form DQ is simply the product of differentials times the
product of derivatives:

DQ ∝
∏
a, a′

dxaa′
∏
b, b′

dybb′
∏
a, b

∂2

∂σab∂τba

. (2.30)

Finally, it should be stressed that the formula (2.27) is valid if and only if N � p.
Application of the superbosonization formula (2.27) to equation (2.22) yields the identity∫ ∏q

b=1 Det(w1, b − H)∏p

a=1 Det(w0, a − H)
dμN(H) = cp, q

∫
DQ SDetN(Q) �̂(Q) e−STr wQ, (2.31)

where STr wQ ≡ TrC
p (w0Q) − TrC

q (w1Q). The function �̂(Q) is a lift of the characteristic
function �(K) for K = ϕϕ̃ + ψψ̃ .

In view of the result (2.31), our short-term goals should now be well motivated: the key
object to understand is the lifted characteristic (super)-function �̂(Q). If we can control �̂,
results for the level correlation functions will follow from a large-N asymptotic saddle analysis
of the Q-integral.

3. Coulomb gas argument

Based on what is called the Dyson Coulomb gas, we are now going to study �(K) for the
rank-1 case K = k� with k ∈ R and � the projector on a one-dimensional subspace of C

N .
A related situation has been investigated in the work of Zinn-Justin [29, 30], Collins [6], and
Guionnet and Maida [15]; we will comment on the literature as we go along. We begin by
reviewing some basic material.

8
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3.1. Voiculescu R-transform

As before, let μN be a probability measure (with or without invariance properties) for Hermitian
N × N matrices H. Let

mn, N := N−1
∫

Tr (Hn) dμN(H) (3.1)

denote the nth moment of μN . We shall assume that mn,N has a limit,

mn := lim
N→∞

mn, N, (3.2)

and consider a generating function z �→ g(z) for these moments at N = ∞:

g(z) :=
∞∑

n=0

mn z−n−1. (3.3)

This series (when it converges) or rather its analytic continuation

g(z) = lim
N→∞

N−1
∫

Tr (z − H)−1dμN(H) (z ∈ C\R) (3.4)

is the Cauchy transform

g(z) =
∫

R

dν(x)

z − x
, dν(x) = π−1 lim

ε→0+
Im g(x − iε) dx (3.5)

of the large-N limit of the so-called density of states ν. Let us now assume that ν has compact
support. Then there exists a number r > 0 such that for z ∈ C with |z| > r the power
series (3.3) converges, the derivative g′(z) does not vanish and hence by the implicit function
theorem the function z �→ g(z) has a local inverse. Because the expansion of g(z) around
z = ∞ begins as k ≡ g(z) = z−1 + · · ·, the power series for the inverse function will likewise
begin as z = k−1 plus corrections. These considerations lead to Voiculescu’s definition of the
R-transform [23]:

g(z) = k ⇐⇒ k−1 + R(k) = z, R(k) =
∞∑

n=1

cn kn−1. (3.6)

Thus the R-transform k �→ R(k) is the function inverse to z �→ g(z) with the pole k−1

subtracted. Under the assumption of compact support for ν the power series for R(k) converges
for sufficiently small k. The coefficients cn are called free cumulants.

Freeness of random variables is defined in an algebraic way [25] which will not be
reviewed here. Suffice it to say that two random matrices A, B are free (in the limit N = ∞)
if the probability law of A + B remains unchanged under conjugation B �→ U †B U by any
U ∈ U∞. Voiculescu proved [23] that the R-transform is linear for free convolution, i.e.
if A, B are free (with R-transforms RA(k) resp. RB(k)), then RA+B(k) = RA(k) + RB(k).
This linearity property parallels the fact that the cumulants of a sum of commutative random
variables equal the sum of the cumulants, and it leads to the expectation that the R-transform
is closely related to the logarithm of the Fourier transform of μN , N → ∞.

Let us mention in passing that, since g(z) is also known as the Green’s function, physicists
by Zee’s fancy [28] sometimes call b(k) := k−1 + R(k) the Blue’s function.

3.1.1. Examples. The Gaussian measure μN with density dμN(H) ∝ e− N
2 Tr H 2

dH is called
the Gaussian Unitary Ensemble (GUE) with c2 = 1. For this measure, one has R(k) = k and
solving the equation z = k−1 + R(k) = k−1 + k for k = g(z), one finds

g(z) = 1
2 (z ±

√
z2 − 4), (3.7)

which gives Wigner’s semicircle law dν(x) = (2π)−1
√

4 − x2 dx.

9
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Another example (taken from recent work [18] by Lueck, Sommers and one of the authors,
on the energy correlations of a random matrix model for disordered bosons) is this. Consider

R(k) = k

1 − k2
=

∞∑
n=1

k2n−1. (3.8)

Thus, all odd free cumulants vanish and the even free cumulants are all equal to unity. Solving
Voiculescu’s equation k−1 + R(k) = z for k = g(z), one obtains

g(z) = i

(√
1

27
− 1

4z2
− i

2z

)1/3

− i

(√
1

27
− 1

4z2
+

i

2z

)1/3

. (3.9)

The density of states of this example has compact support but is unbounded due to an inverse
cube root singularity |x|−1/3 at x = 0.

3.2. Eigenvalue reduction of �

We now specialize to the case of a UN -invariant probability measure for Hermitian operators
H with density dμN(H) = e−N Tr V (H) dH . The goal here is to relate the R-transform R(k) to
the large-N limit of the characteristic function (1.2) for K = k� with � a rank-1 projector.
Our approach will be similar to that of P. Zinn-Justin [30] based on the Harish–Chandra–
Itzykson–Zuber integral.

We start by diagonalizing the Hamiltonian H by a unitary transformation:

H = g−1Xg, X = diag(x1, . . . , xN), g ∈ UN . (3.10)

Recalling that the Jacobian J (X) associated with this transformation is the square of the
Vandermonde determinant:

J (X) =
∏
i<j

(xi − xj )
2, (3.11)

we cast the expression for the characteristic function in the form

�(K) = CN

∫
R

N

(∫
UN

eTr (XgKg−1) dg

)
e−N Tr V (X)J (X) dNx, (3.12)

where dg is a Haar measure for UN . The normalization constant CN is determined by the
condition �(0) = 1.

Now let K ≡ k�, where k ∈ R and � is the orthogonal projector on some (fixed) complex
line in C

N . We are then faced with the inner integral∫
UN

ek Tr (Xg�g−1) dg. (3.13)

The integrand depends on g ∈ UN only through the projector � conjugated by g, and the set of
all these projectors g�g−1 is in bijection with the projective space CP N−1 � UN/(U1×UN−1)

of complex lines in C
N . By parametrizing g�g−1 in the eigenbasis of H as (g�g−1)ij = ui ūj

with
∑N

j=1 |uj |2 = 1, we reduce our integral to∫
UN

ek Tr (Xg�g−1) dg =
∫

CP N−1
ek

∑N
j=1 xj |uj |2 du, (3.14)

where du is a UN -invariant measure for CP N−1.
Now CP N−1 is a Kähler manifold with UN -invariant Riemannian geometry, and the

function

μ : CP N−1 → Lie UN, g · (U1 × UN−1) �→ ig�g−1, (3.15)

10
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is a momentum mapping [3]. We observe that the expression k Tr (Xg�g−1) in the exponent
of our integrand is obtained by contracting μ with the Lie algebra element −ikX ∈ Lie UN .
It follows that the integral is governed by the Duistermaat–Heckman localization principle
[3]. In other words, the integral can be computed exactly by performing the stationary-phase
approximation (including the Gaussian fluctuations) for each of its critical points and summing
the contributions.

There are N critical points; these are the points where g�g−1 is diagonal (with one
diagonal element equal to unity and all others equal to zero). By computing the contribution
from each point and taking the sum, we get∫

CP N−1
ek

∑N
j=1 xj |uj |2 du = C1, N k−(N−1)

N∑
i=1

ekxi∏
j (�=i)(xi − xj )

, (3.16)

with some N-dependent constant C1, N .

3.3. Coulomb gas

Based on the exact expressions (3.12)–(3.16), our goal is to compute the large-N asymptotics
of N−1 ln �(Nk�). We begin by recalling [8] that, governed by∏

i<j

(xi − xj )
2
∏

l

e−N V (xl) dxl, (3.17)

the eigenvalues x1, . . . , xN distribute for N → ∞ according to the equilibrium measure, ν,
which is determined by minimizing Dyson’s Coulomb gas energy functional:

N2
∫

V (x) dν(x) − N2
∫∫

ln |x − y| dν(x) dν(y), (3.18)

the energy of a gas or fluid of charged particles subject to a confining potential N V and mutual
repulsion by (the two-dimensional form of) Coulomb’s law. The Euler–Lagrange equation for
the Coulomb gas energy functional reads

V (x) − 2
∫

ln |x − y| dν(y) + � = 0 (x ∈ supp ν), (3.19)

where � is a Lagrange multiplier for the normalization constraint
∫

dν(x) = 1. By
differentiating once with respect to x, one obtains

V ′(x) = 2 P.V.

∫
dν(y)

x − y
(x ∈ supp ν). (3.20)

Physically speaking, this condition means that the total force vanishes in the state of equilibrium
inside the fluid.

The task of determining the measure ν from equation (3.19) can be formulated and solved
as a Riemann–Hilbert problem [8]. It is known that the solution is unique and corresponds to
a minimum of the energy (hence a maximum of the integrand).

From now on we shall simplify our work by taking the confining potential V of the
probability measure μN to be convex. This assumption ensures that the large-N density of
states is supported on a single interval: supp ν = [a, b].

Next recall the definition (3.5) of the Cauchy transform g(z). Denoting by g± the two
limits

g±(x) = lim
ε→0+

g(x ± iε), (3.21)

11
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which g(z) takes on approaching x ∈ [a, b] from the upper or lower half of the complex plane,
one rewrites the relation (3.20) as

V ′(x) = g+(x) + g−(x). (3.22)

As it stands, this equation holds only for x ∈ [a, b] ⊂ R. However, from general theory
[9], one knows that g±(x) are the two branches of a double-valued complex-analytic function
z �→ (g(z), h(z)) evaluated at z = x. Thus, by the principle of analytic continuation we have,
for all z ∈ C\{a, b},

V ′(z) = g(z) + h(z). (3.23)

Note that g(a) = h(a) = g+(a) = g−(a) and g(b) = h(b) = g+(b) = g−(b).
We will also make use of the integrated form of equation (3.23). For z ∈ C\(−∞, b], let

G(z) :=
∫ b

a

ln(z − x) dν(x), (3.24)

where the principal branch of the logarithm is assumed, giving G(x) ∈ R for x ∈ (b,∞).
Then, let H : C\(−∞, b] → C be defined by the equation

V (z) = G(z) + H(z) − �. (3.25)

We observe that G′(z) = g(z) and hence H ′(z) = h(z). Moreover, by combining (3.25) with
the Euler–Lagrange equation (3.19), we have

H(b) = V (b) − G(b) + � = V (b) −
∫ b

a

ln |b − x| dν(x) + � = G(b). (3.26)

By the same reasoning, H(a) = G(a).

3.4. Asymptotics for k small

In this subsection, we take the absolute value of the real number k to be small. In order to
compute the large-N asymptotics of ln �(Nk�) for this situation, we modify the exact integral
representation (3.12)–(3.16) by expressing the right-hand side of (3.16) as a complex contour
integral

N∑
i=1

ekxi∏
j (�=i)(xi − xj )

= 1

2π i

∮
Cx

ekz dz∏N
j=1(z − xj )

, (3.27)

where the contour Cx loops around the set of points x1, . . . , xN . We thus obtain

�(Nk�) = C2, N k−N+1
∫

R
N

(∮
Cx

eNkz dz∏N
l=1(z − xl)

) ∏
i<j

(xi − xj )
2
∏

l

e−N V (xl) dxl. (3.28)

Because the Coulomb gas energy is of order N2, which is large compared to the perturbation
due to the contour integral and here in particular the ‘external electric field’ term Nkz, we
expect the density of the fluid of charges x1, . . . , xN to remain the same in the limit N → ∞.
(This will turn out to be fully correct as long as k does not exceed a critical value.) Thus, the
charges x1, . . . , xN are still expected to distribute (for N → ∞) according to the equilibrium
measure ν with support [a, b].

Taking this fact for granted, we fix a contour C encircling supp ν = [a, b] and interchange
the integral over {x1, . . . , xN } with the contour integral. Then, by taking the logarithm and
passing to the large-N limit, we arrive at

ω(k) := lim
N→∞

N−1 ln �(Nk�)

= γ + lim
N→∞

N−1 ln
∮
C

eNkz−N
∫ b

a
ln (kz−kx) dν(x) dz, (3.29)

12
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with some number γ which remains unknown for the moment, as we did not keep track of the
overall normalization constant. Note that ω(0) = 0 from �(0) = 1.

The integral (3.29) for N → ∞ is computable by saddle analysis and the method of
steepest descent. We first look for the critical points of the integrand. The condition for z ≡ z0

to be an extremum is

k =
∫ b

a

dν(x)

z0 − x
= g(z0). (3.30)

When does this equation have a solution for z0 ∈ R? To find the answer, note that the function
g(x) for x ∈ R\[a, b] is monotonically decreasing:

g′(x) = −
∫ b

a

dν(y)

(x − y)2
< 0 (x /∈ [a, b]). (3.31)

We therefore have the inequality g(b) > g(∞) = 0 > g(a) and the function

g : R\(a, b) → [g(a), g(b)] (3.32)

is a bijection. Thus, for any k ∈ [g(a), g(b)], there exists a unique solution

z0 = g−1(k) (3.33)

of the equation k = g(z0). Note that z0 ∈ R\(a, b).
In the following let k be fixed, with g(a) < k < g(b). To evaluate the integral (3.29)

by steepest descent, we deform the contour C for z into the axis g−1(k) + iR parallel to the
imaginary z-axis. Because g′(x) < 0 for x ∈ R\[a, b], the saddle at z0 = g−1(k) is a
local minimum of the integrand evaluated along the real axis, but is a local maximum of the
integrand on the axis g−1(k) + iR. Thus, the path of steepest descent leads across the saddle
z0 = g−1(k) in the direction of iR. Steepest descent evaluation of the integral then yields

ω(k) = −1 + k g−1(k) −
∫ b

a

ln(k g−1(k) − k x) dν(x). (3.34)

Note that since k g−1(k) → 1 as k → 0, this satisfies the required normalization condition
ω(0) = 0 by insertion of the additive constant γ = −1. For later use, we write our result in
the equivalent form

ω(k) = −1 + k g−1(k) − G(g−1(k)) − ln k. (3.35)

Now by using d
dz

(k z − G(z))|z=g−1(k) = 0, we infer that ω has derivative

ω′(k) = g−1(k) − 1/k, (3.36)

or equivalently,

(k−1 + ω′(k))|k=g(z) = z. (3.37)

Comparison with (3.6) then shows that ω′(k) = R(k) coincides with the Voiculescu R-
transform. Hence, by integrating,

ω(k) =
∫ k

0
R(t) dt. (3.38)

The reasoning above makes good sense as long as g(a) < k < g(b), so that the saddle
z0 = g−1(k) lies outside the spectrum [a, b]. It should be mentioned that the same result (3.38)
was established under somewhat different assumptions (see below) by rigorous analysis [15]
using a large deviation principle.
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3.5. Asymptotics for k large

We turn to the complementary case of large k, meaning the ranges k < g(a) < 0 and
k > g(b) > 0. In this case, as we shall see, one charge dissociates from the fluid in
the interval [a, b] in response to the strong force exerted by the external field term eNkx .
Consequently, the assumptions leading to formula (3.29) are no longer met and we need to
proceed in a different manner.

Our modified procedure is as follows. Abandoning the contour integral formula (3.27),
we insert the identities (3.14), (3.16) into the eigenvalue integral representation (3.12) for �

and use SN permutation symmetry to single out one eigenvalue, say the first one x1 =: x. In
this way, we obtain the exact expression

�(Nk�) = C3, N k−N+1
∫

R

eNkx−N V (x) πN−1, N (x) dx, (3.39)

πN−1, N (x) = Z−1
N

∫
R

N−1

∏
2�i<j

(xi − xj )
2

∏
2�l�N

(x − xl) e−N V (xl) dxl. (3.40)

The function πN−1, N (x) is a polynomial of degree N − 1 in the variable x. By a classical
result [1, 20] it is actually the orthogonal polynomial of degree N − 1 associated with the
weight function e−N V (x). We find it convenient to choose the normalization constants C3, N

and ZN in such a way that πN−1, N (x) = xN−1 + · · · is monic.
Once again, we will use saddle analysis and the method of steepest descent to calculate

the integral (3.39) for large N. To prepare this step, we observe that the orthogonal polynomial
πN−1, N has a big number N − 1 of real zeroes concentrated in a small neighborhood of the
interval [a, b]. The large-N asymptotics of the high-order polynomial πN−1, N divides the k-
axis into different regions. In fact, when the absolute value of k is large, the term eNkx pushes
the saddle of the x-integral away from [a, b] and thus into the region where πN−1, N does not
oscillate but varies monotonically. The large-N asymptotic analysis of (3.39) then is rather
straightforward; see below. On the other hand, as k decreases below a critical value the saddle
merges with the fluid [a, b], where πN−1, N oscillates rapidly. The integral representation
(3.39) then does not give a direct view of the large-N asymptotics. Fortunately, this case has
already been dealt with in section 3.4 using the alternative representation by a contour integral.

For definiteness, from here on let k > g(b). (For k < g(a), the argument goes just the
same.) The main contribution to the integral (3.39) then comes from large values of x, where
the polynomial (3.40) behaves as

πN−1, N (x) ∼ e(N−1)
∫ b

a
ln(x−y) dν(y) ∼ eNG(x). (3.41)

By inserting this asymptotic expression into the integral (3.39), we obtain

ω(k) = γ1 − ln k + lim
N→∞

N−1 ln
∫

eNkx−N V (x)+NG(x) dx (3.42)

with another constant γ1.
The condition for x ≡ x0 to be an extremum of the integrand is

k = V ′(x0) − g(x0). (3.43)

From (3.23) we know that V ′(z) − g(z) = h(z) is the second branch of the double-valued
function z �→ (g(z), h(z)). Thus, the saddle-point equation is

k = h(x0). (3.44)
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This equation does not always have a solution for x0 ∈ R. However, since V is analytic and
convex by assumption, the derivative

h′(x) = d

dx
(V ′(x) − g(x)) = V ′′(x) +

∫ b

a

dν(y)

(x − y)2
(3.45)

for x > b is positive, so h(x) is monotonically increasing. Therefore, if k > h(b) = g(b),
then k lies in the range of the function h : (b, +∞) → R, and by the implicit function theorem
the monotonicity of h guarantees the local existence of an inverse

k �→ h−1(k) = z (3.46)

of the function z �→ h(z) = k. By h′(x) > 0 for x > b, the solution x0 = h−1(k) of (3.44) is a
maximum of the integrand. Hence, by applying the method of steepest descent and evaluating
the integrand of (3.39) at the critical point x0 = h−1(k), we obtain

ω(k) = γ1 + k h−1(k) − V (h−1(k)) +
∫ b

a

ln

(
h−1(k) − x

k

)
dν(x)

= γ1 + � + k h−1(k) − H(h−1(k)) − ln k, (3.47)

where the second equality is by (3.25). We observe that the derivative of ω is still given by
the R-transform:

ω′(k) = h−1(k) − 1/k = R(k). (3.48)

By matching (3.47) to the small-k result (3.34), we infer that γ1 + � = −1. (Matching will be
justified in section 3.6.)

Essentially the same reasoning goes through for the opposite range k < g(a) = h(a) < 0,
resulting in the same formula (3.47). Note that the argument of the logarithm under the integral
sign in (3.47) remains positive in this k-range, as there is a sign change in both the numerator
and the denominator.

To summarize our results, we have found that

ω(k) =
{−1 + k g−1(k) − G(g−1(k)) − ln k, g(a) < k < g(b),

−1 + k h−1(k) − H(h−1(k)) − ln k, k < g(a) or g(b) < k.
(3.49)

Recalling from section 3.3 the relations g(x) = h(x) and G(x) = H(x) for x ∈ {a, b}, we
see that the different pieces of ω combine to a smooth function (figure 1), since each piece has
derivative ω′(k) = R(k).

3.6. Absence of phase transition

Related to the material of sections 3.4 and 3.5, there exist mathematical results [15] by
Guionnet and Maida (GM), which we now discuss briefly. Using large deviations techniques,
GM control the large-N asymptotics of the spherical integral (1.5) under the condition that
the empirical measure (i.e. the sum of δ-functions located at the eigenvalues) of a sequence of
diagonal N × N matrices XN converges weakly (N → ∞) to a compactly supported density
of states ν with supp ν = [a, b]. In contrast to the present setting, GM stipulate that all
eigenvalues of XN remain strictly confined to the interval [a, b]. In Coulomb gas language,
this means that infinitely high potential walls are placed at the boundaries of the interval [a, b].

With these assumptions, GM prove that N−1 ln IXN
(k) converges to our result ω(k) =∫ k

0 R(t) dt in the small-k range g(a) < k < g(b). For k outside this range, however, they
establish a qualitatively different behavior, separated from the small-k behavior by phase
transitions at the critical points k = g(a) and k = g(b). Please be assured that there is no
contradiction with our result (3.47), as the underlying model assumptions are different. As we
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Figure 1. The saddle trajectories k �→ g−1(k) for g(a) < k < g(b), and k �→ h−1(k) for
k < g(a) or g(b) < k, piece together at the critical points g(a), g(b) to yield a smooth function
k �→ k−1 + R(k).

have seen, for large values of k, the strong external field term eNkx has the effect of expelling
one charge from the fluid of the other charges. Such a dissociation phenomenon is forbidden
by the assumptions of GM.

Still, in view of the phase transitions found by GM and the rather different integral
representations (3.29) and (3.42) appearing in our treatment, the reader may wonder why it
is that the large-N asymptotics for the small-k and large-k regions match perfectly to give a
smooth result for ω(k). Let us now give a simple argument why this must be the case under
our assumptions on the confining potential V.

Consider the mapping π : End(CN) → R which sends H to its projection π(H) = x to
the one-dimensional subspace with projector �. Imagine computing the push forward of μN

by this mapping,

e−N Tr V (H) dH
π�→ e−N �(x)+O(N0) dx, (3.50)

for large N. In the language of quantum field theory, one would call � the (large-N limit of
the) generating function for the one-particle irreducible vertex functions.

Since V is uniformly convex (i.e. its second derivative is bounded below by a positive
constant) and analytic, so is �. Indeed, the latter results from the former as the fixed point of
a renormalization-group-type recursive process of integrating out variables. Now,

ω(k) = lim
N→∞

N−1 ln
∫

eNk Tr � HdμN(H)

= lim
N→∞

N−1 ln
∫

eNkx−N �(x) dx = (kx − �(x))|x: �′(x)=k. (3.51)

Thus, our function ω is the Legendre transform of �. Since �(x) is analytic and uniformly
convex as a function of x ∈ R, the Legendre transform ω(k) must be analytic as a function of
k ∈ R, ruling out any possibility for a phase transition to occur.

Moreover, under the stated conditions on V, one can show that the R-transform R(k) is an
entire function of k ∈ C. Also, in the present setting there is no reason to think that ω should
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have any singularities in the complex k-plane. Hence, by the identity principle (i.e. uniqueness
of analytic continuation), we expect that

ω(k) =
∫ k

0
R(t) dt (3.52)

holds for all k ∈ C. This is the result we propose.

4. Fermion–fermion sector

Our argument so far deals with the rank-1 case K = ϕ ⊗ ϕ̃ = k�. It extends to the higher-
rank case of several replicas ϕ1, . . . , ϕp without difficulty. However, as we have seen in
section 2, the supersymmetry method requires as input the characteristic function �(K) for
K = ϕ ⊗ ϕ̃ + ψ ⊗ ψ̃ , which includes the fermion–fermion expression ψ ⊗ ψ̃ built from
ψ ∈ C

N ⊗ ∧((CN)∗) and ψ̃ ∈ (CN)∗ ⊗ ∧(CN). The reasoning of section 3 does not apply
to that second summand. Therefore, we now develop another scheme, concentrating again on
the simple case of a single replica, K = ψ ⊗ ψ̃ .

So, in this section we make a study of �(K) = ∫
eTr HKdμN(H) for K = ψ ⊗ ψ̃ . Since

the probability measure μN is invariant under conjugation H �→ gHg−1 for g ∈ UN , the
characteristic function �(ψ ⊗ ψ̃) has the property of depending only on the GLN -invariant
〈ψ̃, ψ〉. Although this property is not explicit from the definition of �, it can be made so by
averaging ad hoc over UN -orbits. Hence, we compute

IN(ψ ⊗ ψ̃;H) :=
∫

UN

eTr (ψ⊗ψ̃) g−1Hg dg =
∫

UN

e−〈ψ̃g−1,Hgψ〉 dg (4.1)

as a useful preparation for the subsequent process of integrating against dμN(H).
We claim that the integral (4.1) has the following alternative expression:

IN(ψ ⊗ ψ̃;H) = N !−1
∫ ∞

0
Det(t − 〈ψ̃, ψ〉H) e−t dt. (4.2)

This formula is proved in the next subsection. Having established it, we will determine the
large-N asymptotics of N−1 ln �(Nψ ⊗ ψ̃) in section 4.2.

4.1. Proof of formula (4.2)

After expanding the integrand of (4.1) by the power series of the exponential function,

e−〈ψ̃g−1, Hgψ〉 =
N∑

m=0

(−1)m

m!
〈ψ̃g−1, Hgψ〉m, (4.3)

our task is to compute the integrals
∫

UN
〈ψ̃g−1, Hgψ〉m dg. To do so, it is helpful to recall

some facts from the representation theory of GLN .
The irreducible representations of GLN are labeled by highest weights λ which are

sequences of integers λ ≡ (λ1, λ2, . . . , λN) with λ1 � λ2 � . . . � λN . Here, we will need
only those representations which extend holomorphically to End(CN); these are distinguished
by λN � 0. The character of the representation ρλ with highest weight λ is denoted by
sλ(g) = Trρλ(g) and is called a Schur function. The Schur functions form an orthonormal
system w.r.t. Haar measure dg for UN of total mass

∫
UN

dg = 1:∫
UN

sλ(g
−1)sλ′(g) dg = δλλ′ . (4.4)
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To do the integrals
∫

UN
〈ψ̃g−1, Hgψ〉m dg, our first step is to recognize the integrand as

a special Schur function:

(−〈ψ̃g−1, Hgψ〉)m = s[1m]((ψ ⊗ ψ̃)g−1Hg), (4.5)

where λ = [1m] is the highest weight given by

λ1 = λ2 = · · · = λm = 1, λm+1 = · · · = λN = 0. (4.6)

In the second step, we use the general identity∫
UN

sλ(Kg−1Hg) dg =
∫

UN

Tr ρλ(K)ρλ(g
−1)ρλ(H)ρλ(g) dg

= Tr ρλ(K) Tr ρλ(H)

Tr ρλ(IdN)
= sλ(K) sλ(H)

sλ(IdN)
, (4.7)

which derives from the fact that ρλ is a representation.
We now establish (4.5). For this we start from the relation

Det (IdN − K) =
N∑

m=0

(−1)ms[1m](K), (4.8)

which is a special case of what is sometimes called the dual Cauchy identity [5]. Then,
substituting K = ψ ⊗ ψ̃ , we manipulate the left-hand side as follows:

Det (IdN − ψ ⊗ ψ̃) = eTr ln (IdN −ψ⊗ψ̃) = e− ∑N
m=1 m−1Tr (ψ⊗ψ̃)m

= e+
∑N

m=1 m−1〈ψ̃,ψ〉m = e− ln (1−〈ψ̃,ψ〉) =
N∑

m=0

〈ψ̃, ψ〉m. (4.9)

By combining equations, we have

N∑
m=0

〈ψ̃, ψ〉m =
N∑

m=0

(−1)ms[1m](ψ ⊗ ψ̃). (4.10)

Since the Schur function s[1m](K) is a homogeneous polynomial of degree m in the matrix
entries of K, the desired relation (4.5) follows on replacing ψ̃ → ψ̃g−1Hg.

We are now in a position to compute our integral:∫
UN

(−〈ψ̃g−1,Hgψ〉)m
dg =

∫
UN

s[1m](ψ ⊗ ψ̃g−1Hg) dg = s[1m](ψ ⊗ ψ̃)s[1m](H)

s[1m](IdN)
,

(4.11)

where we used (4.7). On the right-hand side we have the simplification s[1m](ψ ⊗ ψ̃) =
(−〈ψ̃, ψ〉)m from (4.5), and the denominator is the dimension of the representation:

s[1m](IdN) = dim ∧m (CN) = N !

m!(N − m)!
. (4.12)

Thus, we obtain the following expression for IN :

IN(ψ ⊗ ψ̃;H) =
N∑

m=0

1

m!

∫
UN

(−〈ψ̃g−1,Hgψ〉)m dg

= 1

N !

N∑
m=0

(−1)m(N − m)!〈ψ̃, ψ〉ms[1m](H). (4.13)
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We finally resum this expansion. For that, we express the factorial as (N − m)! =∫ ∞
0 tN−m e−t dt and use the dual Cauchy identity (4.8) in reverse to arrive at

IN(ψ ⊗ ψ̃;H) =
∫ ∞

0

tN

N !

N∑
m=0

(−1/t)m〈ψ̃, ψ〉ms[1m](H) e−t dt

= N !−1
∫ ∞

0
Det

(
t − 〈ψ̃, ψ〉H

)
e−t dt. (4.14)

This completes the proof.

4.2. Large-N limit

Recall the definition

�(Nψ ⊗ ψ̃) =
∫

IN(Nψ ⊗ ψ̃;H) dμN(H). (4.15)

As was reviewed in section 2, in the superbosonization method one lifts �(Nψ ⊗ ψ̃) to a
holomorphic function k �→ �̂(Nk) of a complex variable k ∈ C. By substituting t → Nt in
(4.2) and changing the order of integration, we see that

�̂(Nk) = NN+1

N !

∫ ∞

0

(∫
Det (t − kH) dμN(H)

)
e−Nt dt (4.16)

is such a function. We now tackle the task of determining its large-N limit.
Stirling’s formula gives limN→∞ N−1 ln (NN+1/N !) = 1, and by the type of reasoning of

section 3 we find the large-N approximation∫
Det (t − kH) dμN(H) ∼ eN

∫ b

a
ln (t−kx) dν(x). (4.17)

We now take N → ∞ to define

φ(k) := lim
N→∞

N−1 ln �̂(Nk). (4.18)

Note that φ(0) = 0, and by combining the above we have

φ(k) = 1 + lim
N→∞

N−1 ln
∫ ∞

0
e−Nt+N

∫ b

a
ln (t−kx) dν(x) dt. (4.19)

The integral on the right-hand side is a close cousin of the integral (3.29) and, in fact, has
essentially the same saddle point, t = k g−1(k). The overall sign in the exponent is reversed,
but at the same time we are now integrating over t in the direction of the real axis, while the
path of steepest descent in the case of (3.29) was along the imaginary direction. Thus, the
saddle analysis is essentially the same and need not be repeated here. We just quote the result:

φ(k) = 1 − k g−1(k) +
∫ b

a

ln (k g−1(k) − kx) dν(x). (4.20)

This is exactly the negative of ω(k) in (3.34). Hence we conclude (cf (3.52)) that

φ(k) = −
∫ k

0
R(t) dt. (4.21)

Returning to the original meaning of k = 〈ψ̃, ψ〉, we state our final result as follows:

lim
N→∞

N−1 ln �(Nψ ⊗ ψ̃) = −
∑
n�1

cn

n
〈ψ̃, ψ〉n. (4.22)
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In section 3, we achieved a satisfactory understanding of the large-N behavior of
N−1 ln �(NK) for a rank-1 operator K = ϕ ⊗ ϕ̃. The current section does the same for
K = ψ ⊗ ψ̃ . In both cases, our treatment carries over without difficulty to K of higher rank
(or several replicas).

However, the supersymmetry method calls for �(NK) with K of the mixed type
K = ϕϕ̃ + ψψ̃ , cf (2.22). The techniques used in sections 3 and 4 are quite different,
and at the present time we do not know how to combine them to handle the mixed situation.
For this reason, we now turn to a completely different approach.

5. Large-N combinatorial theory of Ω(K)

In the present section, we launch yet another attack, combining the planar graph limit of
perturbation theory with Speicher’s combinatorial approach to the free cumulants. An early
physics paper in this direction is [28].

5.1. From moments to cumulants

We begin by reviewing the usual connection between the moments and the cumulants of
a random number, and afterwards state the analog of this connection in the setting of free
probability theory.

5.1.1. Commutative case (N = 1). Although our interest is in N ×N random matrices in the
limit N → ∞, we temporarily set N = 1 and review the connection between moments and
cumulants for the case of a single random variable x ∈ R with probability measure μ. The
moments mn of μ,

mn =
∫

R

xn dμ(x), (5.1)

are generated by the characteristic function,

�(k) =
∫

R

ekx dμ(x) =
∞∑

n=0

mn

kn

n!
, �(0) = 1, (5.2)

while the cumulants cn are generated by the logarithm of �(k):

ln �(k) =
∞∑

n=1

cn

kn

n!
. (5.3)

Sometimes one wants to express the moments in terms of the cumulants or vice versa.
Switching between the two descriptions is an exercise in basic combinatorics and the Leibniz
product rule of differential calculus. Let us do this exercise as a warm up for a more strenuous
calculation to come in section 5.5 below.

We start by writing the nth moment as an nth derivative at k = 0:

mn = dn

dkn
eln �(k)

∣∣∣∣
k=0

=
(

e− ln �(k) d

dk
◦ eln �(k)

)n ∣∣∣∣
k=0

. (5.4)

By the Leibniz rule this becomes

mn =
(

d

dk
+

�′(k)

�(k)

)n ∣∣∣∣
k=0

. (5.5)

From this formula, by multiplying out factors using the distributive law, we generate a sum of
terms which are in one-to-one correspondence with partitions p ∈ �(n) of the set {1, 2, . . . , n}.
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Figure 2. Example of a non-crossing partition p = {1, 5, 8} ∪ {2, 3, 4} ∪ {6, 7} for n = 8. 0-cells
belonging to the same block of the partition are connected by lines. These lines divide the disk
into sectors (or 2-cells).

Indeed, we are to break up (or partition) n identical factors into νl(p) blocks of integer length
l � 1 subject to

∑
l l νl(p) = n. Each block of length l consists of one logarithmic derivative

�′(k)/�(k) together with l − 1 derivatives d/dk acting on it before evaluation at k = 0. Now
since each block of length l contributes a cumulant cl = (d/dk)l ln �(k)|k=0, we obtain a
formula expressing the moment,

mn =
∑

p∈�(n)

∏
l�1

c
νl(p)

l , (5.6)

as a sum over partitions p ∈ �(n) in terms of the cumulants c1, . . . , cn.

5.1.2. Speicher’s formula (N = ∞). We return to the case of N × N random matrices H
with probability measure μN and recall the definition (3.1) of the moments mn,N and their
large-N limits mn = limN→∞ mn,N . We also recall the definition (3.6) of the free cumulants
cn by the Voiculescu R-transform.

It turns out that the large-N moments mn are expressible in terms of the free cumulants cl

(with l � n) by a combinatorial formula closely analogous to (5.6). Due to Speicher [19], this
formula reads

mn =
∑

p∈NC(n)

∏
l�1

c
νl(p)

l . (5.7)

It differs from (5.6) only in that the sum over all partitions p ∈ �(n) has been restricted to the
subset of non-crossing partitions p ∈ NC(n). A partition p is called non-crossing if for any
two pairs {i1, i2} and {j1, j2} taken from any two different blocks of p, it never happens that

i1 < j1 < i2 < j2. (5.8)

Informally speaking, this means that if we arrange the numbers 1, . . . , n in cyclic order around
the boundary of a disk and connect the numbers of each block of the partition by lines via the
interior of the disk in a ‘minimal’ way, then the lines associated with different blocks do not
cross each other. See figure 2 above for an example.

Consider the single-block (or trivial) partition p, where ν1(p) = . . . = νn−1(p) = 0 and
νn(p) = 1. This partition is non-crossing and contributes

∏
l�1 c

νl(p)

l = cn to Speicher’s
formula (5.7) for the moment mn. Thus (5.7) has the general structure

mn = cn + Pn−1(c1, c2, . . . , cn−1), (5.9)
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where Pn−1 is a polynomial in the free cumulants of order n − 1 or less. It follows that
relation (5.7) can be inverted to express cn in terms of the moments m1, . . . , mn. In this
sense, formula (5.7) may serve to define the free cumulants in terms of the large-N moments.
Speicher [19] has proved (under suitable conditions on μN ) that this combinatorial definition
is equivalent to Voiculescu’s analytic definition of k �→ R(k) = ∑

cn kn−1 via inversion of
z �→ g(z) = ∑

mn z−n−1.

5.2. Cumulant tensor

After these preliminaries, we will outline a combinatorial description of the large-N limit of
N−1 ln �(NK) by way of expansion in powers of K (restricting the numerical part of K to be
of finite rank). For this purpose, we fix some degree n � 1 and consider the full tensor of
cumulants

C
i1... in
j1...jn

= ∂n

∂Ki1j1∂Ki2j2 · · · ∂Kinjn

ln �(K)

∣∣∣∣
K=0

. (5.10)

We refer to the set of components C
i1... in
j1...jn

as the ‘cumulant tensor’ (at degree n) for short.

Please note that our simple notation does not display the dependence which C
i1... in
j1...jn

has on the
random matrix dimension N.

For a general probability measure μN with no symmetries (and N � n), we expect all
components of this tensor to be independent of each other. However, we shall now assume a
probability distribution of the UN -invariant form e−N Tr V (H) dH . The characteristic function
then inherits the invariance property �(K) = �(g−1Kg) for g ∈ UN . It follows that the
set of components C

i1...in
j1...jn

constitute an invariant tensor of UN (or by analytic extension, of
GLN ≡ GLN(C), the complexification of UN ):

C
i1... in
j1...jn

=
∑

i ′1,...,i ′n,j
′
1,...,j

′
n

g
i1

i ′1
· · · gin

i ′n
C

i ′1... i
′
n

j ′
1...j

′
n
(g−1)

j ′
1

j1
· · · (g−1)

j ′
n

jn
, (5.11)

g ∈ GLN . By a classical result of invariant theory due to Weyl [27], one then knows that
C

i1... in
j1...jn

is nonzero only if the numbers {j1, . . . , jn} agree as a set with the set {i1, . . . , in}, i.e.
if there exists an element π of the symmetric group Sn such that jl = iπ(l) for l = 1, . . . , n.
Thus, our cumulant tensor can be expressed as a sum over permutations:

C
i1... in
j1...jn

=
∑
π∈Sn

γn, N (π)

n∏
l=1

δil , jπ(l)
. (5.12)

Moreover, by its definition (5.10) as an nth symmetric derivative, C
i1... in
j1...jn

is invariant w.r.t.
any permutation σ ∈ Sn of the index pairs, (il, jl) �→ (iσ(l), jσ(l)), l = 1, . . . , n. It
follows that we may assume the coefficients γn,N(π) to be conjugacy class functions, i.e.
γn, N(π) = γn,N(σ−1πσ) for all σ ∈ Sn.

Recall now from the basic theory of the symmetric group that the conjugacy class [π ] of an
element π ∈ Sn is determined by its cycle structure; more precisely, by the set of non-negative
integers ν1(π), ν2(π), . . . , νn(π) subject to

∑
l lνl(π) = n, where νl(π) is the number of

cycles of π of length l. An important role in the following will be played by the conjugacy
class, [irr], of all irreducible cycles—by this we mean the conjugacy class of elements π ∈ Sn

with ν1(π) = · · · = νn−1(π) = 0 and νn(π) = 1.
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5.3. Large-N hypothesis

What has been said so far is true for all N, but now we take the large-N limit and claim the
following large-N hypothesis:

lim
N→∞

Nn−1γn,N(π) =
{
cn if [π ] = [irr],
0 else.

(5.13)

In words: Nn−1γn, N(π) goes to zero for N → ∞ unless π ∈ Sn belongs to the conjugacy
class of one irreducible cycle of length n. (If so, the cumulant tensor of degree n is determined
by a single number cn for N → ∞. We shall see that cn is in fact the nth free cumulant,
vindicating our notation.) The hypothesis (5.13) is present in [6], theorem 4.5. To make
our paper self-contained, we now offer some motivation (if not rigorous justification) of this
hypothesis from perturbation theory.

5.4. Perturbation theory argument

We here assume the exponent of our probability distribution e−N Tr V (H) dH to be of the form

Tr V (H) = 1

2σ 2
Tr H 2 + Tr W(H), (5.14)

where the parameter σ 2 is small, so that the interaction (or non-quadratic part) Tr W(H) can be
treated as a perturbation. In order to develop a perturbation expansion in the small parameter
σ 2, we single out the Gaussian (or GUE) measure

dμGUE(H) = e− N

2σ2 Tr H 2

dH, (5.15)

with Lebesgue measure dH normalized by
∫

dμGUE(H) = 1. Our goal is to compute

�(NK) =
∫

e−N Tr W(H)+N Tr HK dμGUE(H). (5.16)

We take it for granted that �(0) = ∫
e−N Tr W(H)dμGUE(H) = 1 by the choice of normalization

constant W(0).
Now, by passing to the logarithm on both sides of the equation and shifting the integration

variable H → H + σ 2K , we obtain

ln �(NK) = Nσ 2

2
Tr K2 + ln

∫
e−N Tr W(H+σ 2K) dμGUE(H). (5.17)

Next we use the trick of writing the GUE measure as the result of applying the heat semigroup
(generated by the Laplacian � = ∑

∂2/∂Hij ∂Hj i) to the Dirac δ-distribution with unit mass
localized at H = 0:

dμGUE(H) = (eσ 2�/2Nδ)(H). (5.18)

We then use partial integration to bring N−1 ln �(NK) into the form

N−1 ln �(NK) = σ 2

2
Tr K2 + N−1 ln

(
eσ 2�/2N e−N Tr W(H)

)∣∣
H=σ 2K

. (5.19)

This expression serves as our starting point to develop the perturbation expansion as follows
(we give only a brief sketch, referring to the literature [4] for greater detail).

One expands the exponential function e−N Tr W(H) by its power series. Using standard
graphical code, one represents each monomial Tr Hl in Tr W(H) by an l-vertex. One also
expands the heat operator eσ 2�/2N and represents each action of the Laplacian � by an edge.
In this way, the contributions to the r.h.s. of (5.19) are drawn as graphs.
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Any given graph contributes with an overall power of Nχ−1 where χ is the Euler
characteristic of the graph, i.e. the number of vertices minus the number of edges plus the
number of faces. Indeed, every vertex carries a factor of N, every edge comes with a factor
of N−1σ 2 and every face corresponds to a free summation variable, thereby contributing one
factor of N. (To do this counting, we first delete the vertex legs that are saturated by the final
substitution H → σ 2K .) Thus, the second term on the r.h.s. of (5.19) can be organized as a
sum over topological sectors:

N−1 ln
(
eσ 2�/2N e−N Tr W(H)

)∣∣
H=σ 2K

=
∑
χ

Nχ−1ωχ(K), (5.20)

where ωχ(K) is the sum of all contributions from graphs with Euler characteristic χ .
By the linked cluster theorem, disconnected graphs cancel upon taking the logarithm.

Now among the set of all connected graphs (with at least one substitution H → σ 2K), the
Euler characteristic becomes maximal for planar graphs with the topology of a disk D, where
all substitutions H → σ 2K are arranged around the boundary of D. The Euler characteristic
for such a graph is χ(D) = 1; indeed, a triangle, say, has three vertices, three edges and one
face, so χ = 3 − 3 + 1 = 1.

The Euler characteristic of a non-planar graph is known to be smaller than the planar
value χ(D) = 1. There also exist planar graphs which have a topology different from that
of a disk; examples are the annulus or a disk with several holes in its interior resulting in an
‘inner’ boundary. Again, the Euler characteristic of these non-disk planar graphs is smaller
than 1. For an annulus A, one has χ(A) = χ(D) − 1 = 0, since there is one face missing as
compared with the disk D.

The upshot of all this is that the leading contribution to (5.20) in the large-N limit is of
order O(N0) and is given by the sum over all planar graphs with disk topology. Because
these graphs are constructed by inserting every substitution H → σ 2K into a single line
(circulating around the boundary of the disk-shaped graph), they all produce single-trace
contributions Tr Kn, n � 1. Perturbation theory thus leads us to expect

lim
N→∞

N−1 ln �(NK) = ω1(K) =
∞∑

n=1

cn

n
Tr Kn. (5.21)

The reason for writing the coefficient of Tr Kn as cn/n will become clear shortly.
It should be emphasized at this point that we are taking the limit N → ∞ while keeping

the rank of (the numerical part of) K finite. Non-disk (e.g. annular) planar graphs make
contributions of the multi-trace form:

N−r Tr (Kn1) Tr (Kn2) · · · Tr (Knr ) Tr (Kn−n1−n2−···−nr ), (5.22)

which would not become negligible in the large-N limit if we let Tr Kn grow with N.
This ends our excursion into perturbation theory. Based on the result (5.21), which

should even be valid beyond the domain of validity of perturbation theory (if only as a series
expansion with finite radius of convergence), it is straightforward to compute the large-N limit
of the cumulant tensor (5.10). Doing so with the help of (5.12), we immediately arrive at the
large-N hypothesis (5.13). Indeed, in the process of applying the first derivative ∂/∂Ki1jπ(1)

to
Tr Kn/n, we have n factors of K to choose from and thus a freedom which cancels the factor
1/n; application of the remaining n − 1 derivatives ∂/∂Kiljπ(l)

gives precisely the sum over
irreducible permutations

∑
π∈[irr]

∏
l δil , jπ(l)

.
At the present stage, we cannot tell whether cn indeed is the nth free cumulant, but this

open question will be settled in the next subsection. Our strategy will be to show that the
large-N hypothesis (5.13) implies Speicher’s formula (5.7). Since it is already known that the
coefficients cn of the latter formula are the free cumulants, the desired result follows.
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5.5. Retrieving Speicher’s formula

Just as in the case (5.4) of a random number, we can generate the moments (3.1) of the
probability measure μN by differentiation of the characteristic function �(K) = eln �(K) =∫

eTr HKdμN(H) at K = 0:

mn, N = N−1
∑

i1,...,in

∂n

∂Kinin−1 · · · ∂Ki2i1∂Ki1in

eln �(K)

∣∣∣∣
K=0

, (5.23)

where indices are arranged in cyclic order and summed in order to manufacture the expectation
of a single trace Tr Hn. By the identity

e− ln � ∂

∂Kikik−1

◦ eln � = ∂

∂Kikik−1

+
∂ ln �

∂Kikik−1

, (5.24)

the expression for mn,N is cast in the form

mn, N = N−1
∑

i1,...,in

(
∂

∂Kinin−1

+
∂ ln �

∂Kinin−1

)
· · ·

(
∂

∂Ki1in

+
∂ ln �

∂Ki1in

) ∣∣∣∣
K=0

. (5.25)

In the following, we adopt the convention of assigning to ∂/∂Kikik−1 the number k.
Now, by evaluating the derivatives at K = 0, we get an expression which is a polynomial

in the cumulant tensor of (5.10). The summands of the polynomial generated in this way are in
one-to-one correspondence (for fixed indices i1, . . . , in and by the bijection ∂/∂Kikik−1 ↔ k)
with partitions p ∈ �(n), where each block of length l of p corresponds to a cumulant tensor
of degree l. For example, the following partition p ∈ NC(8) ⊂ �(8),

p = {1, 5, 8} ∪ {2, 3, 4} ∪ {6, 7} (5.26)

contributes to m8, N as

N−1
∑

i1,..., i8

C
i1i5i8
i8i4i7

C
i2i3i4
i1i2i3

C
i6i7
i5i6

. (5.27)

5.5.1. Contribution from non-crossing partitions. As a first step (which will turn out to be
the main step), we compute the contribution to (5.25) from the non-crossing partitions NC(n),
using the relations (5.10), (5.12) and the large-N hypothesis (5.13).

So, let p ∈ NC(n). To prepare for the task of counting powers of N, we will associate
with p a 2-complex �(p) as follows. Let D be (any) disk and divide the boundary line of D
into n segments numbered in counterclockwise order by 1, . . . , n. These segments shall be
1-cells of the 2-complex �(p) to be constructed. Each pair (k, k −1) of consecutive segments
represents one partial derivative ∂/∂Kikik−1 , which we graphically depict by the boundary point
(also numbered by k) between the two segments. These n =: d0 points separating consecutive
segments are the 0-cells of �(p).

The partition p has not yet been used; but now, if l numbers taken from the set {1, . . . , n}
constitute one block of p, we draw l − 1 arcs across D to connect the members of that block
(or rather, the numbered 0-cells assigned to them) with one another. We take each such arc to
be another 1-cell of �(p). Note that the total number of 1-cells of �(p) is

d1(p) = n +
∑
l>1

(l − 1)νl(p). (5.28)

Because the partition p is non-crossing, the lines of the 1-cells of �(p) divide the area
of the disk D into sectors. We take these sectors to be the 2-cells of the complex �(p) and
denote their total number by d2(p). Figure 2 shows the result of this construction for the
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example given above. (Moreover, it is clear that any choice of orientation for the 1- and
2-cells of �(p) turns �(p) into a differential complex (�(p), ∂) with boundary operator ∂ . It
follows that (�(p), ∂) has an Euler characteristic, which can be computed as the alternating
sum d0 − d1(p) + d2(p).)

We are now in a position to evaluate the contribution to (5.25) from our fixed partition
p ∈ NC(n). According to the definition (5.10), each block of length l of derivatives ∂/∂Kikik−1

encodes one cumulant tensor of degree l. By the identity (5.12) and the hypothesis (5.13)
the large-N leading contribution of each such block is a factor of N−l+1cl times the sum over
irreducible permutations

∑
π∈[irr]

∏
δik,jπ(k)

. Note that the total power of N from the product
of these factors is

N− ∑
(l−1)νl (p) = Nd0−d1(p). (5.29)

We still need to do the sum over indices i1, i2, . . . , in for the product of Kronecker-delta
symbols. Recall that by (5.12) the set of lower indices of a nonzero component of the cumulant
tensor must be the same as its set of upper indices. This constraint forces some of the indices
to be equal. (For our example (5.27), we have i1 = i4 and i5 = i7.) There is a graphical
meaning for these constraints: ia = ib if the two 1-cells numbered by a, b ∈ {1, . . . , n} lie in
the boundary of the same 2-cell of our complex �(p).

Next we observe that for each block or cumulant tensor there exists just one large-N
optimal permutation π ∈ Sl in the sum of (5.12)—this is the shift permutation, or translation
by one unit; it is optimal because it produces no further constraints and hence yields the
maximal power of N from index sums.

We finally calculate the index sum: each of the d2(p) 2-cells of �(p) amounts to one free
index giving a factor of N; there are no extra combinatorial factors, as the optimal permutation
is unique for each block of p; hence, the index sum equals Nd2(p). It follows that the total
contribution to (5.25) from p ∈ NC(n) is

∏
c
νl(p)

l multiplied by

Nd0−d1(p)+d2(p) = Nχ(�(p)). (5.30)

Now the Euler characteristic of a disk D is χ(D) = 1. Therefore, since our complex �(p)

shares with D its simplicial homology by construction, we have the relation

χ(�(p)) = d0 − d1(p) + d2(p) = 1. (5.31)

Thus, the total power is N1, which is canceled by the normalization factor N−1 in (5.25).
In summary, the result of summing all contributions from non-crossing partitions is

mn, N =
∑

p∈NC(n)

n∏
l=1

c
νl(p)

l + · · · , (5.32)

where the dots signify corrections from partitions p /∈ NC(n) and from the multi-trace terms
indicated in (5.22).

5.5.2. Correction terms. The corrections to (5.32) become negligible in the limit N → ∞,
and we now briefly discuss why. For that, we slightly expand our graphical representation.
Let still p ∈ NC(n) and consider once more the associated 2-complex �(p). Now, however,
replace the arcs for each block of p of length l by a ‘blob’—the sum of all perturbation theory
graphs for the cumulant tensor of degree l—with l external lines connecting it to the l members
of that block. The resulting graph is planar (see figure 3 for how it looks in the case of our
example (5.27)). It is planar because the partition p was taken to be non-crossing and the
blobs were chosen to be full disks, as opposed to disks with one or several holes in them.
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Figure 3. Another drawing of the non-crossing partition of figure 2. Blocks of size l are now
drawn as ‘blobs’ with l arms. Each such block represents a free cumulant cl .

Now, inserting any correction of the multi-trace form (5.22) amounts to changing the
topology of a blob from disk to annulus or higher genus. Our graph then is no longer planar.
The same goes for the replacement of p ∈ NC(n) by p /∈ NC(n): the resulting graph cannot
be planar, as some lines emanating from the blobs must cross. As should be plausible by now,
this loss of planarity results in the loss of at least one factor of N. We therefore claim that all
corrections vanish in the large-N limit:

mn = lim
N→∞

mn, N =
∑

p∈NC(n)

n∏
l=1

c
νl(p)

l . (5.33)

This is Speicher’s formula (5.7), provided that we identify the coefficients cn—unknowns for
us up to now—with the free cumulants of free probability theory.

In summary, assuming that (5.21) holds, we have argued that the coefficients cn must be
the free cumulants. This concludes our perturbation theory argument in support of (5.21).
Compared to the (non-perturbative) reasoning of sections 3 and 4, this argument has the
advantage that it applies to the general mixed case where

K =
p∑

a=1

ϕa ⊗ ϕ̃a +
q∑

b=1

ψb ⊗ ψ̃b. (5.34)

6. Application to disordered scattering

As explained in section 2, the arrival of the superbosonization method made it possible, in
principle, for the existing treatment of Gaussian ensembles by supersymmetry techniques to be
extended to non-Gaussian ensembles. What was missing up to now was a good understanding
of the large-N behavior of the characteristic function �(NK). Having developed such an
understanding in the present paper, we are now in a position to go ahead with the investigation
of non-Gaussian ensembles and, in particular, of questions of universality. A natural candidate
for a first application of the new formalism would be the well-known universality hypothesis
for the spectral correlations of UN -invariant ensembles of N × N Hermitian random matrices
in the large-N limit. This hypothesis, however, has already been discussed extensively in the
literature and strong results have been obtained by other methods. We therefore refrain from
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pursuing this issue here and, instead, turn to a problem which so far has been inaccessible: the
question of universality in models of stochastic scattering.

To be concrete, we consider a standard scattering problem with M scattering channels
coupled to an N-dimensional ‘internal’ space C

N . We will use what is sometimes called the
Heidelberg approximation to the scattering matrix:

S(E) = IdM − 2iW † 1

E − H + iWW † W. (6.1)

Here H is the random matrix Hamiltonian acting in the internal space C
N , the scalar parameter

E is the scattering energy and W ∈ Hom(CM, C
N) is a coupling operator with Hermitian

adjoint W † ∈ Hom(CN, C
M). Our interest is in the limit N → ∞ with the number M of

scattering channels kept fixed.
To be specific, we consider the correlation function of two elements of the scattering

matrix (correlation functions of higher order can be treated in exactly the same way):

Cab, cd(E1, E2) = 〈(Sab(E1) − δab)(Scd(E2) − δcd)〉, (6.2)

where the indices label scattering channels, and the angular brackets denote the expectation
value w.r.t. to a probability measure μN which we take to be UN -invariant but non-Gaussian.
Since we eventually want to utilize the result (1.4), we require μN to be of the form (1.1) with
analytic and uniformly convex V.

Let us note that the correlation function (6.2) cannot be expressed solely in terms of the
eigenvalues of H or Heff := H − iWW †. One does have an alternative expression

S(E) = IdM − iK(E)

IdM + iK(E)
, K(E) = W †(E − H)−1W,

in terms of the Wigner-reaction matrix K(E), but there exists no transparent relation between
the distribution of eigenvalues of K(E) and that of H. Therefore, one does not know how to
use orthogonal polynomial techniques for the computation of (6.2).

Our method of choice is the supersymmetry method as reviewed in section 2. To launch
it, we express the elements of the S-matrix as derivatives of a determinant:

Sab(E) − δab = −2
∂

∂Xba

ln Det(E − H + iWXW †)

∣∣∣∣
X=IdM

. (6.3)

For the complex conjugates Scd(E2)−δcd in (6.2), we do the same and thus obtain the following
expression for the correlation function:

Cab,cd(E1, E2) = −4 ∂2

∂Xba∂Ydc

Z(X, Y )

∣∣∣∣
X=Y=IdM

,

Z(X, Y ) =
∫

Det(E1 − H + iWXW †) Det(E2 − H − iWW †)

Det(E1 − H + iWW †) Det(E2 − H − iWYW †)
dμN(H).

(6.4)

While the integrand on the right-hand side differs from that of (2.22) by the presence of the
WW † terms, it is easy enough to incorporate these into the formalism. We get

Z(X, Y ) =
∫

�(K1 + K2) e−Tr (E1K1+E2K2)

× exp(−i〈̃ϕ1,WW †ϕ1〉 + i〈ψ̃1, WXW †ψ1〉 + i〈̃ϕ2, WYW †ϕ2〉 − i〈ψ̃2, WW †ψ2〉), (6.5)

where Kj = ϕj ⊗ ϕ̃j + ψj ⊗ ψ̃j (j = 1, 2). The integral sign stands for the Berezin integral
over the anti-commuting variables of ψj , ψ̃j as well as the ordinary integral (with Lebesgue
measure) over ϕj , ϕ̃j . The integration domain for the latter consists of two copies (j = 1, 2)
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of (CN)∗ ×C
N restricted to the real subspace C

N which is given by ϕ̃1 = −iϕ†
1 and ϕ̃2 = +iϕ†

2,
respectively.

We now take the derivatives ∂/∂Xba and ∂/∂Ydc at X = Y = IdM . We also scale
Kj → NKj . The expression for the correlation function then becomes

Cab, cd(E1, E2) =
∫

�(NK1 + NK2) e−N Tr (E1K1+E2K2) (6.6)

× 4N2 e−N Tr (iK1−iK2)WW †〈ψ̃1, Wb〉
〈
W †

a , ψ1
〉〈̃ϕ2,Wd〉

〈
W †

c , ϕ2
〉
. (6.7)

At this stage, we would like to employ the superbosonization formula (2.27), using the
large-N information about �(NK) from sections 3–5. However, this is not immediately
possible, as the second line of (6.6) is not expressed by GLN -invariants owing to the presence
of W and W †. We therefore use a trick.

6.1. Averaging trick

The trick is to enforce invariance by making a substitution of integration variables (which has
unit Jacobian)

ϕj → gϕj , ψj → gψj , ϕ̃j → ϕ̃j g−1, ψ̃j → ψ̃j g−1. (6.8)

and averaging over g ∈ UN with Haar measure to define the auxiliary quantity

D
(N)
ab, cd := 4N2

∫
UN

e−N Tr g (iK1−iK2) g−1WW †

×〈ψ̃1 g−1, Wb〉
〈
W †

a , gψ1
〉〈̃ϕ2 g−1,Wd〉

〈
W †

c , gϕ2
〉
dg. (6.9)

Our next step is to compute the unitary matrix integral D
(N)
ab, cd in the large-N limit. For

this we use the following result: if A,B ∈ End(CN) are operators whose rank is kept fixed
(i.e. finite) in the limit N → ∞, then∫

UN

e−N Tr (A g B g−1) dg � Det−1(IdN ⊗ IdN + A ⊗ B), (6.10)

where ‘�’ means equality in the large-N limit, with the right-hand side tending to the
determinant of the Fredholm operator End(C∞) � X �→ X + AXB. While this formula
follows as a corollary of the relation between the integral

∫
e−N Tr (A g B g−1) dg and the R-

transform [30], it can be obtained more directly by the observation that the matrix entries of g
and g−1 = g† (under the fixed rank condition on both A and B) become independent complex
Gaussian random variables of variance N−1 in the large-N limit.

We now apply (6.10) to the present situation with A = WW † and B = i(K1 − K2):∫
UN

e−N Tr (WW †g (iK1−iK2) g−1) dg � Det−1(IdN ⊗ IdN + WW † ⊗ i(K1 − K2)). (6.11)

Then we switch from the determinant on C
N ⊗C

N to a (super)-determinant on C
M ⊗C

2|2, using
that W † and W exchange C

N with C
M , while the quadruples ϕ̃1, ϕ̃2, ψ̃1, ψ̃2 and ϕ1, ϕ2, ψ1, ψ2

exchange C
N with the Z2-graded vector space C

2|2:

lim
N→∞

∫
UN

e−N Tr (WW †g (iK1−iK2) g−1) dg = SDet−1(IdM ⊗ Id2|2 + W †W ⊗ isQ). (6.12)

Here s = diag(1,−1, 1,−1) and Q denotes the supermatrix of GLN -invariants

Q =

⎛⎜⎜⎝
〈̃ϕ1, ϕ1〉 〈̃ϕ1, ϕ2〉 〈̃ϕ1, ψ1〉 〈̃ϕ1, ψ2〉
〈̃ϕ2, ϕ1〉 〈̃ϕ2, ϕ2〉 〈̃ϕ2, ψ1〉 〈̃ϕ2, ψ2〉
〈ψ̃1, ϕ1〉 〈ψ̃1, ϕ2〉 〈ψ̃1, ψ1〉 〈ψ̃1, ψ2〉
〈ψ̃2, ϕ1〉 〈ψ̃2, ϕ2〉 〈ψ̃2, ψ1〉 〈ψ̃2, ψ2〉

⎞⎟⎟⎠ . (6.13)
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Next, to account for the post-exponential factors in the integral (6.9), we introduce

f (Q) = (W †W ⊗ Q)
(
IdN ⊗ Id2|2 + W †W ⊗ isQ

)−1
. (6.14)

By a slight extension of (6.10) to include these factors, we have

lim
N→∞

D
(N)
ab, cd = SDet−1(IdM ⊗ Id2|2 + W †W ⊗ isQ)

× 4
(
f (Q)ab; ψ̃1,ψ1

f (Q)cd ;̃ϕ2,ϕ2 + f (Q)cb;ψ̃1,ϕ2
f (Q)ad ;̃ϕ2,ψ1

)
, (6.15)

where the first index pair indicates the position of the matrix entry in End(CM), and the second
pair indicates the one in End(C2|2). In the following, we write

lim
N→∞

D
(N)
ab, cd =: Fab, cd(Q). (6.16)

6.2. Superbosonization

Since the averaging trick has converted all dependence on ϕ,ψ of the integrand in (6.6)
into an implicit dependence through the supermatrix Q of (6.13), we can now apply the
superbosonization formula (2.27). In the superbosonization step, one forgets the expression
(6.13) for the supermatrix Q and treats the matrix entries of Q as the new integration variables;
at the same time, the integrand is ‘lifted’ to a function of Q.

To bring the result of superbosonization into a form suitable for the large-N saddle analysis
of section 6.3, we write SDetN(Q) = eN ln SDet Q = eN STr ln Q. With the same motivation, we
write the lift �̂(NQ) of the characteristic function �(NK) of (5.21) as

�̂(NQ) = eN STr �(Q)+O(N−1), �(Q) =
∞∑

n=1

cn

n
Qn. (6.17)

By sending N to infinity, we then obtain the exact result

lim
N→∞

Cab, cd(z + ε/N, z − ε/N) = lim
N→∞

∫
DQ eN STr (ln Q+�(Q)−z Q) e−ε STr (sQ)Fab, cd(Q).

(6.18)

Here we used the fact (cf [17]) that the normalization constant in (2.27) has the value cp, q = 1
for the present case of p = q = 2. The explicit expression for the invariant Berezin integration
form DQ defined in (2.30) becomes

DQ = (2π)−4
2∏

i,j=1

dQϕ̃i ,ϕj
dQψ̃i ,ψj

∂2

∂Qϕ̃i ,ψj
∂Qψ̃i ,ϕj

. (6.19)

We also observe that by (2.29), the Qϕ̃ϕ-integral ranges over (isQ)
†
ϕ̃ϕ = (isQ)ϕ̃ϕ > 0, while

the Qψ̃ψ -integral ranges over U2.
One may ask why we keep e−ε STr (sQ)Fab, cd(Q) but neglect O(N0) correction terms in

ln �̂(NQ) which appear to be of the same order. This question will be answered at the end of
the next subsection.

6.3. Saddle approximation

In the limit N → ∞, the dominant factor in the integral is eN STr (ln Q+�(Q)−zQ). Taking the
first variation of the exponent gives the saddle-point equation

Q−1 + R(Q) = z · Id2|2, R(Q) =
∞∑

n=1

cn Qn−1. (6.20)

This is Voiculescu’s equation (3.6), except that the role of the complex variable k is now taken
by the supermatrix Q.
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Let z ∈ R be inside the support of the large-N spectral measure of the random matrix H.
Then we know that the equation q−1 + R(q) = z for a scalar variable q ∈ C has two solutions,
q = g+(z) and q = g−(z), with

Re g+(z) = Re g−(z), Im g+(z) = −Im g−(z) < 0. (6.21)

The following analysis is standard [22] and we therefore give only a sketch. We first look
for diagonal matrices Q that solve the saddle-point equation (6.20). The condition isQϕ̃ϕ > 0
selects

Qϕ̃ϕ = diag (g+(z), g−(z)). (6.22)

(This is literally true if Re g±(z) = 0. When the real part is nonzero, a contour deformation
is necessary in order to reach this saddle point.)

In the fermion–fermion sector (i.e. Qψ̃ψ ), there are in principle four possible choices of
diagonal saddle for Qψ̃ψ . Two of these, (++) and (−−), do not contribute for N → ∞ as
they come with suppression factors 1/N due to fermionic Goldstone modes from breaking of
supersymmetry. The remaining two choices, (+−) and (−+), are equivalent in the sense that
they turn out to lie on the same orbit of the symmetry group. Thus, we select the diagonal
saddle

Q0 = diag (g+(z), g−(z), g+(z), g−(z)) = Re g+(z)Id2|2 + iIm g+(z) s. (6.23)

The dominant part of the integrand is invariant under conjugation Q → T QT −1 by
elements T of the Lie supergroup U1,1|2 [2]. The orbit generated by the action on Q0 of this
symmetry group is a supermanifold of saddle points

Q = T Q0(z)T
−1 = Re g+(z)Id2|2 + iIm g+(z) T sT −1. (6.24)

Evaluating the dominant part of the integrand along this manifold, we simply get unity:

eN STr (ln Q+�(Q)−z Q)|Q=T Q0(z)T −1 = e0 = 1. (6.25)

Moreover, the integration over the Gaussian fluctuations normal to the saddle-point manifold
also gives unity by supersymmetry. Hence, we have

lim
N→∞

Cab, cd(z + ε/N, z − ε/N) =
∫

DT e−ε STr (sT Q0(z)T
−1)Fab, cd(T Q0(z)T

−1), (6.26)

where DT denotes the U1,1|2-invariant Berezin integration form for the saddle-point
supermanifold. This is the very same result which is obtained for the case of the Gaussian
unitary ensemble in the limit N → ∞. In this sense, the result is universal.

Let us summarize what are the agents of the mechanism leading to universality. First
of all, the dominant factor eN STr (ln Q+�(Q)−z Q) of our integral is invariant under a Lie
supergroup U1,1|2. This symmetry group is determined by the type of correlation function
under consideration and does not depend on the details of the probability measure μN . All
saddle-point supermanifolds then are orbits of U1,1|2.

Second, by the principle of maximal supersymmetry the large-N limit always selects
the same type of orbit, Q = T Q0(z)T

−1, as long as z lies in the bulk of the spectrum. (At
the edges of the spectrum, the orbit degenerates by the vanishing of � := ∓Im g±(z).) The
specific details of the probability measure μN enter only via the scale factor �.

Third, the correlation function is obtained by restricting the (non-invariant part of the)
integrand to the orbit Q = T Q0(z)T

−1 and integrating along it. The scale factor � is needed
in order to express the energy dependence of the correlation function in the proper units given
by the mean level spacing. At the same time, the ‘scattering observable’ Fab, cd(T Q0(z)T

−1) is
expressed in terms of the average S-matrix and physical quantities called ‘sticking probabilities’
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or transmission factors [22]. When this is done, the correlation function assumes its universal
form.

Let us finally give the reason why it was legitimate to neglect the O(N0) corrections to
ln �̂(NQ). Any such correction is U1,1|2-invariant and, in fact, vanishes along the dominant
saddle-point supermanifold. Its only effect is to cause a slight perturbation of the scale of
this supermanifold and correct the density of states by a term of order 1/N . This effect is
negligible in the large-N limit.

7. Summary and outlook

In this paper, we employed a variety of techniques to study the characteristic function �(NK)

and its lift �̂(NQ), which are key to a recent variant of the supersymmetry method, i.e.
the Wegner–Efetov technique of integration over commuting and anti-commuting variables.
What we found is that the large-N asymptotics of �̂(NQ) for any unitary ensemble ‘close to
Gaussian’ is determined by the R-transform known from free probability theory. (More
precisely, we made the assumption that the confining potential for the random matrix
eigenvalues is uniformly convex and analytic, in which case the R-transform is an entire
function.) The task of computing correlation functions then reduces to a discussion centered
around supermanifolds which are given as solution spaces of Voiculescu’s equation (1.10)
extended to the case of a supermatrix Q.

This insight opens the door to numerous applications which in the past had been beyond
the reach of the supersymmetry method. In the present paper, we have given a first application
to stochastic scattering, demonstrating the universality of S-matrix correlations for the case of
unitary ensembles close to Gaussian. Future applications of the method will be aimed at more
demanding situations with two or more cuts (i.e. with a density of states supported on several
disjoint intervals) and double scaling limits at critical points. To make progress with such
far-from-Gaussian problems, we first have to learn how to deal with singularities that develop
in the R-transform.

We stress that although our paper deals exclusively with unitary ensembles, the methods
used are robust and do extend to ensembles of different symmetry type.

Let us finish with a quick glance at a new and exciting development. In a long series of
papers by Erdös et al [11–14, 21], sine-kernel (or GUE) universality of spectral correlations
has recently been established for the case of Hermitian Wigner matrices, i.e. random matrices
with statistically independent entries. Using these results as input to the present formalism,
we may now address the wider class of random matrices given as the sum of a Wigner matrix
and a unitary ensemble. Indeed, the characteristic function of such a random matrix is a
product � = �Wigner × �unitary. In the present paper, we developed a large-N theory of the
second factor, while the results of Erdös et al give control of the first factor; more precisely,
�̂Wigner(NQ) approaches �̂GUE(NQ) with a rate of convergence which is sufficiently fast in
order for sine-kernel universality to emerge. Moreover, because the sum of a Wigner matrix
and a unitary ensemble is a sum of free random variables, the R-transform of the sum is the
sum of the individual R-transforms. This offers a good prospect of obtaining analytical control
of the more general situation.
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Note added. The large-N hypothesis (5.13) with cn equal to the nth free cumulant is essentially equivalent to
theorem 2.6 of Collins et al [7]. (We thank a referee for alerting us to that result.)
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